Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
European Journal of Human Genetics ; 31(Supplement 1):343-344, 2023.
Article in English | EMBASE | ID: covidwho-20239389

ABSTRACT

Background/Objectives: One of the most remarkable features of SARS-CoV-2 infection is that a large proportion of individuals are asymptomatic while others experience progressive, even lifethreatening acute respiratory distress syndrome, and some suffer from prolonged symptoms (long COVID). The contribution of host genetics to susceptibility and severity of infectious disease is well-documented, and include rare monogenic inborn errors of immunity as well as common genetic variation. Studies on genetic risk factors for long COVID have not yet been published. Method(s): We compared long COVID (1534) to COVID-19 patients (96,692) and population controls (800,353) using both questionnaire and EHR- based studies. First meta-analysis of 11 GWAS studies from 8 countries did not show genome-wide significant associations. Result(s): Testing 24 variants earlier associated to COVID-19 susceptibility or severity by COVID-19 Host Genetics Initiative showed genetic variation in rs505922, an intronic variant in ABO blood group gene, to be associated with long COVID compared to population controls (OR = 1.16, 95% CI: 1.07-1.27, p = 0.033). (Within-COVID analysis gave similar OR, but was not significant after conservative Bonferroni correction (OR = 1.17, 95% CI: 1.06-1.30, p = 092)). Conclusion(s): The first data freeze of the Long COVID Host Genetics Initiative suggests that the O blood group is associated with a 14% reduced risk for long COVID. The following data freezes with growing sample sizes will possibly elucidate long COVID pathophysiology and pave the way for possible treatments for long lasting COVID symptoms.

2.
J Clin Med ; 12(11)2023 May 27.
Article in English | MEDLINE | ID: covidwho-20243363

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a life-threatening lung condition that arises from multiple causes, including sepsis, pneumonia, trauma, and severe coronavirus disease 2019 (COVID-19). Given the heterogeneity of causes and the lack of specific therapeutic options, it is crucial to understand the genetic and molecular mechanisms that underlie this condition. The identification of genetic risks and pharmacogenetic loci, which are involved in determining drug responses, could help enhance early patient diagnosis, assist in risk stratification of patients, and reveal novel targets for pharmacological interventions, including possibilities for drug repositioning. Here, we highlight the basis and importance of the most common genetic approaches to understanding the pathogenesis of ARDS and its critical triggers. We summarize the findings of screening common genetic variation via genome-wide association studies and analyses based on other approaches, such as polygenic risk scores, multi-trait analyses, or Mendelian randomization studies. We also provide an overview of results from rare genetic variation studies using Next-Generation Sequencing techniques and their links with inborn errors of immunity. Lastly, we discuss the genetic overlap between severe COVID-19 and ARDS by other causes.

3.
J Virol Methods ; 318: 114755, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-20240515

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a highly contagious intestinal virus. However, the current PEDV vaccine, which is produced from classical strain G1, offers low protection against recently emerged strain G2. This study aims to develop a better vaccine strain by propagating the PS6 strain, a G2b subgroup originating from Vietnam, on Vero cells until the 100th passage. As the virus was propagated, its titer increased, and its harvest time decreased. Analysis of the nucleotide and amino acid variation of the PS6 strain showed that the P100PS6 had 11, 4, and 2 amino acid variations in the 0 domain, B domain, and ORF3 protein, respectively, compared to the P7PS6 strain. Notably, the ORF3 gene was truncated due to a 16-nucleotide deletion mutation, resulting in a stop codon. The PS6 strain's virulence was evaluated in 5-day-old piglets, with P7PS6 and P100PS6 chosen for comparison. The results showed that P100PS6-inoculated piglets exhibited mild clinical symptoms and histopathological lesions, with a 100% survival rate. In contrast, P7PS6-inoculated piglets showed rapid and typical clinical symptoms of PEDV infection, and the survival rate was 0%. Additionally, the antibodies (IgG and IgA) produced from inoculated piglets with P100PS6 bound to both the P7PS6 and P100PS6 antigens. This finding suggested that the P100PS6 strain was attenuated and could be used to develop a live-attenuated vaccine against highly pathogenic and prevalent G2b-PEDV strains.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Chlorocebus aethiops , Swine , Animals , Vero Cells , Porcine epidemic diarrhea virus/genetics , Virulence , Serial Passage , Vaccines, Attenuated/genetics , Coronavirus Infections/epidemiology , Diarrhea/veterinary
4.
Journal of Hainan Medical University ; 28(20):1-5, 2022.
Article in English | GIM | ID: covidwho-2320288

ABSTRACT

Since the outbreak of COVID-19, severe acute respiratory syndrome coronavirus 2 genome is still mutating, forming a variety of variants with strong transmission capacity, causing the spread of the epidemic worldwide, posing a serious threat to people's physical and mental health, and posing a major challenge to global public health. Omicron remains the main variant in several outbreaks worldwide, accounting for about 99% of the global genetic sequence. Recently, the World Health Organization announced that the subvariant of Omicron BA.5 has been found in more than 100 countries and regions around the world, causing the global epidemic rebound. However, there are few studies on the subvariant BA.5. This article reviews the latest research progress in epidemiology, infectivity, pathogenicity, vaccine and monoclonal antibody protection against Omicron subvariant BA.5, in order to provide reference for scientific prevention and control of Omicron subvariant BA.5.

5.
Fujian Journal of Agricultural Sciences ; 37(11):1388-1393, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-2316627

ABSTRACT

Objective: Epidemiology and genetic variations of the infectious bronchitis virus(IBV) in Fujian province were studied. Method: Two strains of virus isolated from the diseased chickens in Fujian in 2021 were identified by chicken embryo pathogenicity test, electron microscope observation, and RT-PCR. S1 genes of the isolates were cloned, sequenced, and analyzed using biological software. Result: The two IBV strains were code named FJ-NP01 and FJ-FZ01. The full length of S1 of FJ-NP01 was 1 629 nt encoding 543 amino acids, and that of FJ-FZ01, 1 620 nt encoding 540 amino acids. The S1 gene cleavage site of FJ-FZ01 was HRRRR, same as all reference strains of genotype I branch;while that of FJ-NP01 HRRKR differed from the reported site of IBV isolated from genotype IV but same as that of TC07-2 reference strain of genotype VI. The homology of nucleotide and amino acid between the two isolates was 83.2% and 79.6%, respectively, but merely 75.7%-76.3%and 77.1%-83.5% with the Mass-type conventional vaccines H120 and H52, respectively. Further analysis showed that FJ-NP01was from a recombination event between CK CH GD LZ12-4 and L-1148, the homology of nucleotide acid between 1438-1506 nt of FJ-NP01 with CK CH GD LZ12-4 was 97%, and 95.9% between the other nucleotide acid of S1 gene with L-1148. Conclusion: It appeared that the IBV epidemic experienced in the province was complex in nature and that the existing Mass vaccines would not provide sufficient immune protection to deter the spread.

6.
International Journal of Agronomy ; : 1-12, 2023.
Article in English | Academic Search Complete | ID: covidwho-2305070

ABSTRACT

Purple-fleshed sweet potato (PFSP) is a major staple food and feed material in tropical countries. The pandemic of COVID-19 that encouraged healthy lifestyles worldwide further increases the importance of PFSP. Despite its importance, the investment in research to improve PFSP in Indonesia was left behind. The objective of the research was to estimate the genetic variation and genetic distance of new PFSP genotypes prior to variety release. The research trials were arranged in a randomized block design, with nine new PFSP genotypes from polycrosses breeding as treatments and three check varieties in four growing environments in West Java, i.e., Cilembu, Jatinangor, Maja, and Karangpawitan during one season. Agronomic traits data were analyzed by the multivariate analysis. The principal component analysis (PCA) showed high genetic variation of PFSP in four environments. The eigenvalue ranges from 1.92 to 5.29 in Cilembu which contributed to 80.958% variability, 0.543–6.177 which contributed variability to 92.135% in Jatinangor, 0.824–5.695 in Karangpawitan which contributed to 92.117%, and 0.822–4.797 in Maja which contributed to 86.133%. Storage root length, storage root diameter, number of roots per plant, total root weight per plant, number of marketable/commercial roots, marketable/commercial root weight, number of roots per plot, and total storage root weight have a discriminant value of more than 0.7 in PC 1. Agglomerative hierarchical clustering (AHC) showed a wide distribution obtaining two clusters in Cilembu with euclidean distance 1.92–5.29, Jatinangor 1.72–6.09, Karangpawitan 1.28–6.38, and Maja 2.05–5.09. High genetic variation in the four environments greatly supports to the development of PFSP new varieties. [ FROM AUTHOR] Copyright of International Journal of Agronomy is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

7.
Journal of Biology and Today's World ; 11(4), 2022.
Article in English | GIM | ID: covidwho-2304127

ABSTRACT

Susceptibility to infection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes the disease COVID-19, may be understood more clearly by looking at genetic variants and their associations to susceptibility phenotype. I conducted a genome-wide association study of SARS-CoV-2 susceptibility in a multiethnic set of three populations (European, African, and South Asian) from a UK BioBank clinical and genomic dataset. I estimated associations between susceptibility phenotype and genotyped or imputed SNPs, adjusting for age at enrollment, sex, and the ten top principal components of ancestry. Three genome-wide significant loci and their top associated SNPs were discovered in the European ancestry population: SLC6A20 in the chr3p21.31 locus (rs73062389-A;P=2.315 x 10-12), ABO on chromosome 9 (rs9411378-A;P=2.436 x 10-11) and LZTFL1 on chromosome 3 (rs73062394;P=4.4 x 10-11);these SNPs were not found to be significant in the African and South Asian populations. A multiethnic GWAS may help elucidate further insights into SARS-CoV-2 susceptibility.

8.
Vestnik Rossiyskoy voyenno meditsinskoy akademii ; 3:593-604, 2022.
Article in Russian | GIM | ID: covidwho-2298225

ABSTRACT

A new coronavirus infection (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) broke out at the end of 2019 in Wuhan (China). The disease has become a global pandemic and claimed more than 6 million lives after spreading rapidly around the world. Issues related to the complicated course of COVID-19 mechanisms continue to be the subject of active study. It is known that morbidity and mortality increase dramatically with increasing age and concomitant diseases, including obesity, diabetes, cancer, and cardiovascular diseases. Although most infected people recover, even young and otherwise healthy patients can get sick with this disease. In this regard, an urgent task is to search for specific genetic factors that can explain the predisposition of people to infection and the development of a severe COVID-19 form. Human genetic determinants can provide the scientific basis for disease prediction and the development of personalized therapies to counteract the epidemic. In addition, cases of repeated infection with SARS-CoV-2 are increasingly being registered, which occurs 1-6 months after initial infection on average and depends on the virus genome structure. Studies conducted on sequencing viral genomes have shown that some patients were re-infected with the same strain of coronavirus, while others were different. This, in turn, causes researchers concerns about the effectiveness of immunity after infection and vaccine reliability. The genetic characteristics of a person and a virus commonly determine the tendency for reinfection. It is difficult to determine the true COVID-19 reinfection prevalence, which is explained by the low detectability of asymptomatic reinfection and the fact that many patients with a mild course of the disease were not tested at an early stage of the pandemic. Therefore, the true prevalence of reinfection with COVID-19 does not reflect the current reality. There are many more cases of reinfection than are described in the literature. In this regard, the true contribution of a virus' genetic features to reinfection of COVID-19 can be determined only after population studies, and when developing immunization programs against a COVID-19, it is necessary to take into account the prevalence of reinfection in the population.

9.
Glob Health Med ; 5(2): 78-84, 2023 Apr 30.
Article in English | MEDLINE | ID: covidwho-2304308

ABSTRACT

The outbreak of the novel coronavirus infection caused worldwide confusion. The problem with this infection is that it causes severe illness in some patients, resulting in a high rate of death if appropriate treatment is not given. If patients with severe illness that requires treatment are appropriately identified, treatment can be focused on these patients. However, in the early days of the COVID-19 outbreak, the inability to predict and diagnose the disease led to hospitals being overwhelmed. Therefore, various methods for the diagnosis of severe disease were developed early on, and various methods are still being investigated to predict high-risk patients. The currently available prediction methods are divided into those that predict the onset of severe disease and those used to determine the severity of the disease. Specifically, the main methods include genetic factors, serum humoral factors, laboratory tests, and diagnostic imaging. Since each of these factors has different features, using them in combination is likely to be advantageous.

10.
Chinese Journal of Clinical Infectious Diseases ; 13(4):305-314, 2020.
Article in Chinese | EMBASE | ID: covidwho-2270125

ABSTRACT

2019-nCoV has a up to 96% homology with the gene sequence of a bat coronavirus. By comparing its 7 conserved non-structural proteins, it is found that 2019-nCoV belongs to SARS related coronaviruses(SARSr-CoV). The receptor for 2019-nCoV entering cells is the same as that for SARSr-CoV, and angiotensin-converting enzyme 2 (ACE2) is a common cross-genus receptor. This article first elaborates the interspecies transmission and genetic variation, then briefly discusses the receptors on the surface of human cells (such as ACE2 and APP4), which cause human infection and encode five proteins in the viral genome, therefore are important targets for development of antiviral drugs. The article reviews eight promising anti-coronavirus drugs, including three anti-HIV drugs (Lopinavir/Ritonavir, Danoprevir/Ritonavir, Darunavir), two anti-Ebola virus drugs (Remdesivir, Galidesivir), two anti-influenza virus drugs (Arbidol, Favipiravir) and one anti-malarial drug (chloroquine phosphate). Among them, Remdesivir, Abidol and Favipiravir have strong inhibitory effects on 2019-nCoV, they may be the most promising drugs under investigation.Copyright © 2020 by the Chinese Medical Association.

11.
Chinese Journal of Clinical Infectious Diseases ; 13(4):305-314, 2020.
Article in Chinese | EMBASE | ID: covidwho-2270124

ABSTRACT

2019-nCoV has a up to 96% homology with the gene sequence of a bat coronavirus. By comparing its 7 conserved non-structural proteins, it is found that 2019-nCoV belongs to SARS related coronaviruses(SARSr-CoV). The receptor for 2019-nCoV entering cells is the same as that for SARSr-CoV, and angiotensin-converting enzyme 2 (ACE2) is a common cross-genus receptor. This article first elaborates the interspecies transmission and genetic variation, then briefly discusses the receptors on the surface of human cells (such as ACE2 and APP4), which cause human infection and encode five proteins in the viral genome, therefore are important targets for development of antiviral drugs. The article reviews eight promising anti-coronavirus drugs, including three anti-HIV drugs (Lopinavir/Ritonavir, Danoprevir/Ritonavir, Darunavir), two anti-Ebola virus drugs (Remdesivir, Galidesivir), two anti-influenza virus drugs (Arbidol, Favipiravir) and one anti-malarial drug (chloroquine phosphate). Among them, Remdesivir, Abidol and Favipiravir have strong inhibitory effects on 2019-nCoV, they may be the most promising drugs under investigation.Copyright © 2020 by the Chinese Medical Association.

12.
Genetics and Biodiversity Journal ; 7(1):75-87, 2023.
Article in English | GIM | ID: covidwho-2269734

ABSTRACT

Being pushed by natural selection, random genetic drift, gene editions, and receptor immunity response, viruses develop constantly through mutations affecting different genes and leading to genetic diversity and producing new variants. In order to know well how a mutation could have an impact on the possibility of being infected, on transmission, and on aggressivity of SARS-CoV-2 it would be important to study these mutations. To be able to carry out a comparative study between variants and undergone mutations over many countries in the world, we've dealt with many genomic sequences that have been rapidly accumulated in the GenBank since January 2020, and published by many laboratories over the world. These sequences allowed us to establish phylogenetical trees using a strong bioinformatic tool, just enhanced to study Covid which is MEGA version 11. Distribution of shifted sequences of different variants over the world within phylogenetical trees shows that the overwhelming majority of detected mutations are accumulated in the 5 known variants Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), Gamma (P.1) et Omicron (B.1.1.529), especially within their most variable genes, structural genes of which are N (Nucleocapsid protein) and S (Spike glycoprotein) added to functional ones ORF (Open Reading Frame : ORF1ab, ORF3a);hence, variants holding these mutations are the most dominant and the most infectious this time in the world.

13.
Disease Surveillance ; 38(1):7-10, 2023.
Article in Chinese | CAB Abstracts | ID: covidwho-2261583

ABSTRACT

Objective: To assess the risk of public health emergencies occurring in the mainland of China or possibly imported from outside China in January 2023. Methods: Based on various data and departmental notification information on domestic and foreign public health emergencies reports and surveillance of key infectious diseases, the expert consultation method was used and experts from provincial (autonomous regions and municipalities directly under the central government) centers for disease prevention and control were invited to participate in the assessment by video conference. Results: The number of public health emergencies reported in January 2023 is expected to increase or be similar to that reported in December 2022. The COVID-19 rebound in the northern hemisphere is likely to continue in January 2023 due to immune escape of BQ, XBB and other possible emerging Omicron variants' subtypes. The increased migration of people in Chinese mainland during the Spring Festival in 2023 could increase the risk of the spread of the SARS-CoV-2 among uninfected people. The level of influenza virus activity is likely to increase in January, and influenza A is likely to dominate. January 2023 remains risky month for nonoccupational carbon monoxide poisoning. Conclusion: Special attention is given to COVID-19, and general attention is given to seasonal influenza and nonoccupational carbon monoxide poisoning.

14.
Future Virology ; 18(1):31-38, 2023.
Article in English | EMBASE | ID: covidwho-2251277

ABSTRACT

Aim: To evaluate the significance of E gene analysis in addition to N and RdRp genes of SARS-CoV-2, and to compare the specificity and sensitivity of targets. Material(s) and Method(s): We used two reverse transcription-PCR assays: one targeting N, E and RdRp and the other targeting N and RdRp genes and analyzed variation in threshold cycle (Ct) values. Result(s): Of the 155 samples, 70.32% tested positive: all three genes were detected in 45.87%, N and RdRp in 19.27% and only N in 34.86%. Patients negative for the E gene were tested after symptoms disappeared and Ct values were significantly higher. Conclusion(s): Samples negative for the E gene were potentially false positive and clinical conditions should be assessed while interpreting results.Copyright © 2023 Future Medicine Ltd.

15.
JAPS: Journal of Animal & Plant Sciences ; 33(1):110-116, 2023.
Article in English | Academic Search Complete | ID: covidwho-2284794

ABSTRACT

Phosphorus is vital nutrient for the crop yield, and Breeding rice for tolerant to low phosphorus, efficient in uptake and assimilation is the best way for sustainable production. This study aimed to evaluate Bangladeshi rice cultivars and introgression lines (INLs) under phosphorus deficient soil to understand the genetic variation in deficiency tolerance. A total of 28 rice genotypes from various ecotypes such as Aus, Aman, Boro and Jhum and INLs were collected and grown in pot contained highly phosphorus deficient soil in the rooftop polythene shed house during October 2019 to March 2020. A phosphorus deficiency susceptible variety, IR 64, was used as control, and experiment was conducted following randomized complete block design with two replications. Biomass related traits such as dry weight (DW) and relative dry weight (RDW, %) were analyzed at early vegetative stage. Visual score based on the responses to artificial drought occurred due to absence of water for 5 consecutive days because of government imposed Covid-19 lockdown were also evaluated in a scale of 0 to 4. Plants showed wide variation in the measured traits in both in the phosphorus added normal or phosphorus deficient conditions. Two patterns of responses were observed. One pattern was similar to susceptible control IR 64 and another is highly sensitive to P-deficiency. Cluster analysis resulted four groups (I to IV). Group I consist of four rice varieties including Pathar kuchi, Lal dhan, INL-9, and INL-30, and showed low DW and low tolerances to phosphorus deficiency and artificial drought. Group II contain nine accessions including IR 64, Murali, Kuti Agrani, Kernaicha, and five INLs, and showed higher DW and susceptibility to phosphorus deficiency and artificial drought. Group III had medium DW and highly sensitive to phosphorus deficient condition and the accessions Kali jira and Aus (Awned) were included. Two jhum variety, Renkhoa Dhan and Galongpru, and seven INLs belong to the group IV which showed medium DW but tolerant to phosphorus deficiency and artificial drought compare to other groups. The genetic variations of DW and RDW under phosphorus deficient and artificial drought conditions were clarified among rice varieties in Bangladesh and INLs with IR 64 genetic background, and several varieties and INLs were found as the promising materials for further breeding program. [ABSTRACT FROM AUTHOR] Copyright of JAPS: Journal of Animal & Plant Sciences is the property of Knowledge Bylanes and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)

16.
Journal of the National Institute of Public Health ; 71(4):292-304, 2022.
Article in Japanese | GIM | ID: covidwho-2281220

ABSTRACT

Public Health Centers of Japan. of which there are 468 across the country as of April 2022. are at the core of health crisis management. responding to natural disasters and infectious diseases according to the Community Health Act (1994). Under the Infectious Diseases Control La these centers have made repeated efforts to respond to COV1D-19 from the first to the seventh waves while epidemic dynamics changed. variants emerged. and pathogenicity fluctuated. All centers essentially play a common role in infectious disease control (answering questions and consultations. testing, registering cases, coordinating healthcare. transporting confirmed patients, following up with patients and close contacts. carrying out epidemiological investigations. issuing notifications for recommendations on hospital stays and work restrictions. etc.). 'forever, due to the varying number of cases and healthcare resources depending on the region, the actual work was not identical, and local governments. which operate the centers. took different appreoclws. Looking back on the epidemic, the first, second, and third waves saw travel restrictions implemented across the country, and were characterized by a demand for testing that exceeded capacity. At that time. COVID-19 was a threat to the respiratory system, no effective treatment or vaccination was available. and the number of healthcare institutions diagnosing and treating cases was inadequate. The fourth wave saw the Alpha variant ripping through nursing homes putting a significant burden on healthcare. while the fifth wave saw the Delta variant spreading mainly from Tokyo after the Olympics. The sixth and seventh waves came with the highly. Contagious Omicron variant. leading to skyrocketing patient numbers and the public health capacity quickly being overwhelmed. Local governments considered ways to reduce the burden on Public Health Centers, including outsourcing. Over this 2.5 year period, numerous advisories were issued by the Ministry of Health, Labor, and Welfare (MHLW), and the Japanese Association of Public Health Center Directors has advocated actively on behalf of the centers. Given that Japan is a disaster-prone country, Public Health Centers in Japan are expected to play a pivotal role in crisis preparedness, responses to, and recovery from natural disasters and infectious diseases. As a coordination hub to protect lives and maintain health, here we strongly suggest that public health centers implement the lessons learned from COVID-19 to collaborate with healthcare institutions and long-term care facilities, and evolve into a sustainable social framework to advance pandemic preparedness in their respective communities.

17.
Proceedings of Singapore Healthcare ; 31(no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2279141

ABSTRACT

Introduction: Accumulating evidence recommends that infectious diseases including coronavirus disease 2019 (COVID-19) are often associated with oxidative stress and inflammation. Paraoxonase 1 (PON1, OMIM: 168,820), a member of the paraoxonase gene family, has antioxidant properties. Enzyme activity of paraoxonase depends on a variety of influencing factors such as polymorphisms of PON1, ethnicity, gender, age, and a number of environmental variables. The PON1 has two common functional polymorphisms, namely, Q192R (rs662) and L55M (rs854560). The R192 and M55 alleles are associated with increase and decrease in enzyme activity, respectively. Objective(s): The present study was conducted to investigate the possible association of rs662 and rs854560 polymorphisms with morbidity and mortality of COVID-19. Method(s): Data for the prevalence, mortality, and amount of accomplished diagnostic test (per 106 people) on 25 November 2020 from 48 countries were included in the present study. The Human Development Index (HDI) was used as a potential confounding variable. Result(s): The frequency of M55 was positively correlated with the prevalence (partial r = 0.487, df = 36, p = 0.002) and mortality of COVID-19 (partial r = 0.551, df = 36, p < 0.001), after adjustments for HDI and amount of the accomplished diagnostic test as possible confounders. Conclusion(s): This means that countries with higher M55 frequency have higher prevalence and mortality of COVID-19.Copyright © The Author(s) 2022.

18.
Genes (Basel) ; 13(9)2022 09 10.
Article in English | MEDLINE | ID: covidwho-2236662

ABSTRACT

Genetic variation has been widely covered in literature, however, not from the perspective of an individual in any species. Here, a synthesis of genetic concepts and variations relevant for individual genetic constitution is provided. All the different levels of genetic information and variation are covered, ranging from whether an organism is unmixed or hybrid, has variations in genome, chromosomes, and more locally in DNA regions, to epigenetic variants or alterations in selfish genetic elements. Genetic constitution and heterogeneity of microbiota are highly relevant for health and wellbeing of an individual. Mutation rates vary widely for variation types, e.g., due to the sequence context. Genetic information guides numerous aspects in organisms. Types of inheritance, whether Mendelian or non-Mendelian, zygosity, sexual reproduction, and sex determination are covered. Functions of DNA and functional effects of variations are introduced, along with mechanism that reduce and modulate functional effects, including TARAR countermeasures and intraindividual genetic conflict. TARAR countermeasures for tolerance, avoidance, repair, attenuation, and resistance are essential for life, integrity of genetic information, and gene expression. The genetic composition, effects of variations, and their expression are considered also in diseases and personalized medicine. The text synthesizes knowledge and insight on individual genetic heterogeneity and organizes and systematizes the central concepts.


Subject(s)
Genetic Heterogeneity , Genome , Chromosomes , DNA , Reproduction/genetics
19.
Biomedicines ; 11(2)2023 Jan 29.
Article in English | MEDLINE | ID: covidwho-2215574

ABSTRACT

The immunomodulatory and metabolic effects of vitamin D receptor (VDR) activation have been considered beneficial in mitigating the susceptibility and severity of COVID-19 infection. Furthermore, vitamin D-binding protein (DBP) has pleiotropic effects on the immune system that may influence inflammation associated with COVID-19. Multiple observational studies have demonstrated an association between low levels of serum 25-hydroxyvitamin D and risk and the severity of COVID-19 infection. However, the impact of vitamin D supplementation as an adjunctive treatment for COVID-19 based on evidence from randomized clinical trials is unclear. Equally important is that certain variations of the genes involved in the vitamin D metabolic pathway have been shown to affect immune function and linked with various clinical outcomes, including cardio-metabolic disorders, autoimmune diseases, infections, and cancers. This indicates inter-individual difference in body response to vitamin D. There is also emerging evidence that common polymorphisms of these genes may influence the susceptibility and severity of COVID-19, although the confidence of these findings is limited by a small number of studies and participants. Further studies are needed to address the potential role of VDR activation and DBP in the pathophysiology of COVID-19 which take into account the genetic variations of vitamin D metabolic pathway.

20.
Disease Surveillance ; 37(11):1467-1473, 2022.
Article in Chinese | GIM | ID: covidwho-2201091

ABSTRACT

Objective: To analyze epidemiological characteristics of COVID-19 outbreaks caused by SARS-CoV-2 Delta variant in 3 areas of Zhejiang province in December 2021.

SELECTION OF CITATIONS
SEARCH DETAIL